Séries numériques

Exercice 1.

Déterminer la nature de la série de terme générale u_n , lorsque u_n est égale à :

- $(n!)^2$
- 2. $\frac{n^2}{n^3+2}$
- $3. \quad \frac{2}{(\ln n)^n}$

- $4. \frac{1}{(\ln n)^{\ln n}}$
- 5. $\frac{1}{\ln(n^2+n+2)}$
- [6.] $1 \cos \frac{1}{n}$

Exercice 2.

Montrer la convergence de la série $\sum (-1)^n \ln(1+\frac{1}{n})$. Déterminer sa somme. On admet que $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$.

Exercice 3.

Soit $(a_n)_n$ une suite de réels strictement positifs qui décroît vers 0. On pose $v_n = \frac{a_n - a_{n+1}}{a_n}$.

- 1. Soient $N \ge 1$ et $p \ge 0$. Montrer que $1 \frac{a_{N+p+1}}{a_N} \le \sum_{n=N}^{N+p+1} v_n$.
- 2. Montrer que la série $\sum v_n$ diverge.

Exercice 4.

Soit $\sum u_n$ une série à terme positifs convergente. Montrer que $\sum \sqrt{u_n u_{n+1}}$ est aussi convergente

Exercice 5.

Soient $\sum u_n$ et $\sum v_n$ deux séries à termes strictement positifs convergentes. Montrer que les séries suivantes sont aussi convergentes.

 $\sum \max(u_n, v_n)$, $\sum \sqrt{u_n v_n}$ et $\sum \frac{u_n v_n}{u_n + v_n}$

Exercice 6.

Soit $(u_n)_n$ une suite décroissante de réels positifs. On suppose que la série $\sum u_n$ converge Montrer que $nu_n\to 0$

Exercice 7.

Soit $(u_n)_n$ une suite de réels positifs. On pose $v_n = \frac{u_n}{u_n+1}$ montrer que $\sum u_n$ et $\sum v_n$ sont de même nature

Exercice 8.

Soit $(u_n)_n$ une suite de réels positifs. On pose $v_n = \frac{u_n}{u_1 + ... + u_n}$ Montrer que $\sum u_n$ et $\sum v_n$ sont de même nature.

On pourra étudier la série $ln(1 - v_n)$ dans le cadre de la divergence.

Exercice 9.

Soit $(u_n)_n$ une suite décroissante de réels strictement positifs.

1. on suppose que $\sum u_n$ converge. Montrer que la série de terme générale $v_n = n(u_n - u_{n+1})$ converge et $\sum_{n=1}^{+\infty} v_n = \sum_{n=1}^{+\infty} u_n$

SÉRIE $n^{o}23$

- 2. Réciproquement, on suppose que la série $\sum v_n$. Montrer que la série $\sum u_n$ converge si, et seulement si, la suite $(u_n)_n$ converge vers 0
- 3. Donner un exemple de suite $(u_n)_n$ qui ne converge pas vers 0 , alors que la série $\sum v_n$ diverge

Exercice 10.

Soit $\lambda \in \mathbb{R}$. Montrer que la série $\sum \frac{\lambda^n}{n!}$ converge et que $\sum_{n=0}^{+\infty} \frac{\lambda^n}{n!} = e^{\lambda}$.

Égalité que l'on met dans la poche, pour traiter la vieille loi de POISSON en probabilité, dans la modélisation des phénomènes rares.

Exercice 11.

1. Justifier la convergence de la série $\sum_{n\geq 1} \frac{(-1)^n}{n}$

On pose $R_n = \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{k}$

2. Montrer que

$$R_n + R_{n+1} = \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{k(k+1)}$$

- $\boxed{3.}$ Déterminer un équivalent de R_n
- 4. Donner la nature de la série $\sum R_n$

Exercice 12.

Pour $n \ge 1$ on pose $u_n = v_n = \frac{(-1)^n}{\sqrt{n}}$

- 1. Montrer que les séries $\sum u_n$ et $\sum v_n$ convergent.
- Montrer que la série correspondant au produit de Cauchy des séries $\sum u_n$ et $\sum v_n$ diverge.

Exercice 13 (Séries de Bertrand).

Hellow Bertrand!

Soit $(\alpha, \beta) \in \mathbb{R}^2$, pour $n \ge 2$ on pose $u_n = \frac{1}{n^{\alpha}(\ln n)^{\beta}}$ et on s'intéresse à l'étude de la convergence de la série $\sum_{n\geq 2}u_n.$

- 1. Montrer que si $\alpha > 1$, alors la série $\sum_{n \geq 2} u_n$ est convergente. Un grand merci à Riemann.
- 2. Montrer que si $\alpha < 1$, alors la série $\sum_{n>2} u_n$ diverge.
- 3. Étudier la série $\sum_{n\geq 2} u_n$ dans le cas où $\alpha=1$.

Ind: distinguer les cas $\beta \le 0$ et $\beta > 0$, et on pourra chercher dans la valise des intégrale, sinon; au secours Riemann!

Exercice 14.

Soit $\sum z_n$ une série complexe convergente. Montrer que la série $\sum \frac{z_n}{n}$ converge. Ind : Établir $\sum_{n=1}^N \frac{z_n}{n} = \sum_{n=1}^N \frac{S_n}{n(n+1)} + \frac{S_N}{N+1}$ avec $S_n = \sum_{n=1}^N z_n$

Exercice 15.

On considère la série de terme général $u_n = \cos(\pi \sqrt{n^2 + n + 1})$

 $[\ 1.\]$ Prouver qu'au voisinage de $+\infty$

$$\pi\sqrt{n^2+n+1} = \pi n + \frac{\pi}{2} + \alpha \frac{\pi}{n}$$

Où α est un réel que l'on déterminera.

- 2. En déduire que la série $\sum u_n$ converge.
- 3. La série $\sum u_n$ converge-t-elle absolument?

Exercice 16 (Règle de Raabe-Duhamel).

1. Soient $\sum u_n$ et $\sum v_n$ deux séries à termes strictement positifs telle qu'il existe $n_0 \in \mathbb{N}$ vérifiant $\forall n \geq n_0$, $\frac{u_{n+1}}{u_n} \le \frac{\overline{v_{n+1}}}{v_n}$. Montrer que : Si $\sum v_n$ converge alors $\sum u_n$ converge

Si $\sum u_n$ diverge alors $\sum v_n$ diverge

[2.] Soient β un réel non nul $(u_n)_n$ une suite de réels strictement positifs vérifiant :

$$\frac{u_{n+1}}{u_n} = 1 - \frac{\beta}{n} + o(\frac{1}{n})$$

- 2.1 Soit α un réel strictement positif et $v_n = \frac{1}{n^{\alpha}}$. Montrer que $\frac{v_{n+1}}{v_n} \frac{u_{n+1}}{u_n} = \frac{\beta \alpha}{n} + o(\frac{1}{n})$
- [2.2] Montrer que si $\beta > 1$ alors la série $\sum u_n$ converge
- [2.3] montrer que si β < 1 alors la série $\sum u_n$ diverge
- [3.] Déterminer la nature des séries de terme général u_n :
 - 3.1 $u_n = \frac{(2n)!}{2^{2n}(n!)^2}$
 - 3.2 $u_n = \frac{a(a+1)...(a+n-1)}{b(b+1)...(b+n-1)}$ Où a et b sont des réels qui ne sont pas des entiers négatifs

Exercice 17.

Étudier la convergence de la série de terme générale $u_n = \frac{(-1)^n}{\sqrt{n} + (-1)^n}$.

Ind: A glissage...

Exercice 18.

Soit $(u_n)_n$ la suite définie par $u_0 \in]0,1[$ et pour tout $\forall n \in \mathbb{N}$ $u_{n+1} = u_n - u_n^2$

- 1. Existence et éventuellement calcul de : $\sum_{n=0}^{+\infty} u_n^2$ et $\sum_{n=0}^{+\infty} \ln(1-u_n)$
- [2.] Étudier la convergence de la série $\sum u_n$

Exercice 19.

Soient $\sum u_n$, $\sum v_n$ et $\sum w_n$ trois séries réelles que $\sum u_n$ et $\sum w_n$ convergent, et $\forall n \in \mathbb{N}$ $u_n \leq v_n \leq w_n$. Montrer que $\sum v_n$ converge

Exercice 20 (cours!).

Développement décimal d'un réel

Soit x un réel strictement positif. Pour $n \in \mathbb{N}$ on pose $A_n = \frac{\lfloor 10^n x \rfloor}{10^n}$ et pour $n \in \mathbb{N}^*$ on pose $a_n = 10^n (A_n - A_{n-1})$

- 1. Montrer que $\forall n \in \mathbb{N}^*$, $0 \le a_n \le 9$
- 2. Montrer que la série $\sum \frac{a_n}{10^n}$ converge et que $x = [x] + \sum_{n=1}^{+\infty} \frac{a_n}{10^n}$
- 3. Soit $(b_n)_n$ une suite telle que $\forall n \in \mathbb{N}^* \ 0 \le b_n \le 9$ et $x = [x] + \sum_{n=1}^{+\infty} \frac{b_n}{10^n}$ Montrer que $\forall \in \mathbb{N}^*$, $a_n = b_n$

Ind : Par récurrence sur *n*

Exercice 21 (Règle d'Abel).

Soient $(u_n)_n$ et $(v_n)_n$ deux suites réelles.

Pour $n \in \mathbb{N}$, on pose $S_n = \sum_{k=0}^n u_k$ et $\alpha_n = S_n(v_n - v_{n+1})$ On suppose que la suite $(S_n)_n$ est bornée et que $(v_n)_n$ est une suite décroissante de limite nulle.

- [1.] Justifier que $\alpha_n = O(v_n v_{n+1})$
- [2.] Montrer que la série $\sum (v_n v_{n+1})$ converge , puis que la série $\sum \alpha_n$ converge absolument
- 3. Démontrer que :

$$\sum_{k=0}^{n} u_n v_n = \sum_{k=0}^{n} \alpha_n + S_n v_n$$

- 4. En déduire que $\sum u_n v_n$ converge
- [5.] Montrer que le résultat reste vrai si $(u_n)_n$ est complexe.
- [6.] Soit $\theta \in \mathbb{R} \setminus 2\pi \mathbb{Z}$.

Montrer que la série $\sum \frac{e^{in\theta}}{\sqrt{n}}$ converge.

7. Étudier la nature de la série $\sum \frac{e^{in}}{n^{\alpha}}$ selon les valeurs de $\alpha \in \mathbb{R}$.

Exercice 22.

- 1. Donner un équivalent de la somme partielle de la série $\sum_{n\geq 1} \frac{1}{n^{\alpha}}$ lorsque $\alpha \leq 1$.
- 2. Donner un équivalent du reste de la série $\sum_{n>1} \frac{1}{n^{\alpha}}$ lorsque $\alpha > 1$.

Exercice 23 (Série de Riemann : cas complexe 1).

Soit $z \in \mathbb{C}$, pour $n \ge 1$ on pose $u_n = \frac{1}{n^z}$.

- 1. Montre que la série $\sum_{n} u_n$ converge si, et seulement si, Re(z) > 1.
- 2. Montrer que la série $\sum_{n} u_n$ est absolument convergente si, et seulement si, Re(z) > 1.

Exercice 24.

Soit $(u_n)_n$ une suite réelle telle que les deux séries $\sum u_n$ et $\sum |u_n - u_{n+1}|$ convergent. Montrer que la série $\sum u_n^2$ converge.

Exercice 25.

Convergence et calcul de la somme de la série suivante $\sum \ln(1-\frac{1}{n^2})$.

Exercice 26.

Pour $x \in \mathbb{R}$, on pose $\zeta(x) = \sum_{n=1}^{+\infty} \frac{1}{n^x}$.

- 1. Déterminer l'ensemble de définition de ζ .
- 2. À l'aide des encadrements par des intégrales, montrer que $\zeta(x) \sim_{1^+} \frac{1}{x-1}$.

Exercice 27.

Soit $P, Q \in \mathbb{R}[X]$ deux polynômes non nuls , on pose $u_n = \frac{P(n)}{Q(n)}$.

- 1. Montrer que u_n est bien définie à partir d'un certain rang n_0 .
- 2. Montrer que la série $\sum_{n\geq n_0} u_n$ est convergente si, et seulement si, $\deg Q \geq P+2$.
- 3. Montrer que la série $\sum_{n\geq n_0} (-1)^n u_n$ converge si, et seulement si, $\deg Q \geq \deg P + 1$.

MPSI 2 6 / 6 Mohamed Aqalmoun

^{1.} Pour tout nombre complexe z de partie réelle > 1, $\zeta(z) := \sum_{n=1}^{+\infty} \frac{1}{n^z} = \prod_{p,p \text{ premier}} \frac{1}{1 - p^{-z}}$.